If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=3.5
We move all terms to the left:
3x^2-(3.5)=0
We add all the numbers together, and all the variables
3x^2-3.5=0
a = 3; b = 0; c = -3.5;
Δ = b2-4ac
Δ = 02-4·3·(-3.5)
Δ = 42
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{42}}{2*3}=\frac{0-\sqrt{42}}{6} =-\frac{\sqrt{}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{42}}{2*3}=\frac{0+\sqrt{42}}{6} =\frac{\sqrt{}}{6} $
| x-3/9=7/18 | | 9x-2x+68=9x+36 | | 72x^2+270x-81=0 | | 5(2+u)-u=10=4(u+1) | | z2=19 | | w2+4w-6=0 | | (x/8)+23-4=3 | | 11x+5=-9x+21 | | 2x=5x=35 | | -13.5=v/7-2.3 | | 10x+2x+x−11x=16 | | 3+11j-15=11j-12 | | 8b+6-8b=+1 | | 9-11y+16=-10-11y | | 20c-10=c+19c-10 | | x+17=-9 | | -4u+6u+10=3-5u | | 197=142-u | | 2(x+3)=-5x+41 | | 71=10b+1 | | 5x-3+4x=33 | | 101=-3-8p | | 11h-10-16h=-16-5h | | -14q-18=18-11q | | j/4−1=8 | | (x+75)+(x+50)+75=180 | | -18+16g-13=16g+16 | | 3=6/b | | 6-4m=7m-9m+12 | | 1-6v=-19-6v | | 3x^2+37x+104=0 | | 4(j-13)-3=13 |